Понятия со словосочетанием «конические сечения»

Описанное коническое сечение или описанная коника для треугольника — это коническое сечение, проходящее через три вершины треугольника, а вписанное коническое сечение или вписанная коника — это вписанное в треугольник коническое сечение, т.е. касающееся сторон треугольника (возможно, не самих сторон, а их продолжений) Пусть даны три различные точки A,B,C, не лежащие на одной прямой, и пусть ΔABC — треугольник, имеющий эти точки в качестве вершин. Обычно считается, что буква, например A, обозначает...
Диаметр конического сечения — прямая проходящая через середины двух параллельных хорд.

Связанные понятия

Теорема котангенсов — тригонометрическая теорема, связывающая радиус вписанной окружности треугольника с длиной его сторон. Теорему котангенсов удобно использовать при решении треугольника по трём сторонам.
Существует единственное аффинное преобразование, которое переводит правильный треугольник в данный треугольник.

Подробнее: Эллипс Штейнера
Теорема Гильберта о погружении плоскости Лобачевского гласит, что плоскость Лобачевского не допускает гладкого изометрического погружения в трёхмерное евклидово пространство.
Гипе́рбола Ки́перта — гипербола, определяемая по данному треугольнику. Если последний представляет собой треугольник общего положения, то эта гипербола является единственным коническим сечением, проходящим через его вершины, ортоцентр и центроид.
Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.
Изометрия — биекция между метрическими пространствами, сохраняющая расстояния между точками.
Эквифокальная гиперповерхность (или гиперповерхность Дюпена) — гиперповерхность в пространственной форме, у которой значение главных кривизн и их кратности одинаковы во всех точках.
Сферическая теорема Пифагора — теорема, устанавливающая соотношение между сторонами прямоугольного сферического треугольника.
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Эволю́та плоской кривой — геометрическое место точек, являющихся центрами кривизны кривой.
Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, объёмный, пространственный» и μετρέω, «метрео» — «измеряю») — раздел евклидовой геометрии, в котором изучаются свойства фигур в пространстве. Основными (простейшими) фигурами в пространстве являются точки, прямые и плоскости.
Недезаргова геометрия — проективная геометрия плоскости, в которой теорема Дезарга может не иметь места.
Теорема Лестера — утверждение в геометрии треугольника, согласно которому в любом разностороннем треугольнике две точки Ферма, центр девяти точек и центр описанной окружности лежат на одной окружности (окружности Лестера). Названа именем канадского математика Джун Лестер (June Lester).
Полуплоскость в математике — множество точек плоскости, лежащих по одну сторону от некоторой прямой на этой плоскости.
То́чка — абстрактный объект в пространстве, не имеющий никаких измеримых характеристик (нульмерный объект). Точка является одним из фундаментальных понятий в математике.
Геометрия Галуа (названа именем французского математика 19-го века Эвариста Галуа) — это раздел конечной геометрии, рассматривающий алгебраическую и аналитическую геометрию над конечными полями (или полями Галуа). В более узком смысле геометрию Галуа можно определить как проективное пространство над конечным полем.
Теорема Пуанкаре о векторном поле (также известна как теорема Пуанкаре — Хопфа и теорема об индексе) — классическая теорема дифференциальной топологии и теории динамических систем;
Абсолютная геометрия — часть классической геометрии, независимая от пятого постулата евклидовой аксиоматики (то есть в абсолютной геометрии пятый постулат может выполняться, а может и не выполняться). Абсолютная геометрия содержит предложения, общие для евклидовой геометрии и для геометрии Лобачевского.
Теорема Кейси или Кэзи — теорема в евклидовой геометрии, обобщающая неравенство Птолемея. Названа по имени ирландского математика Джона Кейси.
Теорема Витта — теорема о свойствах конечномерных ортогональных пространств над полями произвольного вида. Она утверждает, что любая изометрия между двумя подпространствами конечномерного ортогонального векторного пространства может быть продолжена на все пространство.
Правильный шестиугольник (гексагон) — правильный многоугольник с шестью сторонами.
Риманов тензор кривизны представляет собой стандартный способ выражения кривизны римановых многообразий, а в общем случае — произвольных многообразий аффинной связности, без кручения или с кручением.
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
Сферическая геометрия — раздел геометрии, изучающий геометрические фигуры на поверхности сферы.
Планиме́трия (от лат. planum — «плоскость», др.-греч. μετρεω — «измеряю») — раздел евклидовой геометрии, изучающий двумерные (одноплоскостные) фигуры, то есть фигуры, которые можно расположить в пределах одной плоскости: треугольники, окружности, параллелограммы и т.д.
Вписанная в треугольник окружность — окружность внутри треугольника, касающаяся всех его сторон; наибольшая окружность, которая может находиться внутри треугольника. Центр этой окружности является точкой пересечения биссектрис треугольника и называется инцентром треугольника.
Теорема Буземана о центральных сечениях — теорема выпуклой геометрии о свойствах площадей центральных сечений симметричного выпуклого тела.
Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.).
В общей теории относительности инварианты Карминати — Макленахана (англ. Carminati-McLenaghan invariants, CM scalars) составляют один из наборов скалярных инвариантов кривизны. Они включают в себя 16 скаляров, получаемых из тензора Римана.
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Теорема Картана — Дьёдонне — теорема, названная в честь французских математиков Эли Жозефа Картана и Жана Дьёдонне. Теорема касается структуры автоморфизмов пространства, снабжённого симметричной билинейной формой (например, евклидова пространства).
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.

Подробнее: Особая точка (дифференциальные уравнения)
Теорема тангенсов — теорема, связывающая между собой тангенсы двух углов треугольника и длины сторон, противоположные этим углам.
Первая и вторая сферические теоремы косинусов устанавливают соотношения между сторонами и противолежащими им углами сферического треугольника.
Гиперциклы через заданную точку, имеющие одну и ту же касательную в этой точке, сходятся к орициклу по мере стремления расстояния к бесконечности.
В геометрии центральные прямые — это некоторые специальные прямые, связанные с треугольником и лежащие в плоскости треугольника. Особое свойство, которое отличает прямые как пифагоров триеугольникцентральные прямые проявляется через уравнение прямой в основе фиботаччи трилинейных координатах. Это особое свойство также связано с понятием центр треугольника. Понятие центральной прямой было введено Кларком Кимберлингом в статье, опубликованной в 1994 году.

Подробнее: Центральная прямая
Касательная индикатриса — сферическая кривая строящаяся по данной гладкой регулярной кривой.
В геометрии точка Парри — это точка, связанная с треугольником, лежащим на плоскости. Точка является замечательной точкой треугольника и перечислена под именем X(111) в Энциклопедии центров треугольника. Точка Парри названа в честь английского геометра Сирила Парри (Cyril Parry), изучавшего её в начале 1990-х.
Конформно-евклидова модель или модель Пуанкаре́ — модель пространства Лобачевского.
Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, который внёс значительный вклад в геометрию и другие области математики.
Выпуклый многогранник — частный случай многогранника, пересечение конечного числа замкнутых полупространств.
Теорема Хольмгрена — теорема о единственности решения задачи Коши для дифференциального уравнения с частными производными в случае аналитичности коэффициентов дифференциального оператора.
Фокус — в геометрии точка, относительно которой (которых) проводится построение некоторых кривых. Например, один или два фокуса могут использоваться при построении конических сечений, в число которых входит окружность, эллипс, парабола и гипербола. Также два фокуса используются при построении овала Кассини и овала Декарта. Большее число фокусов рассматривается при определении n-эллипса.
Окружность Брокара (окружность семи точек) — окружность, диаметром которой является отрезок, соединяющий центр описанной окружности данного треугольника и его точку Лемуана. Две точки Брокара лежат на этой окружности, так же как и три вершины треугольника Брокара. Эта окружность концентрическая с первой окружностью Лемуана.
Разложение Риччи — это разложение тензора кривизны Римана на неприводимые относительно ортогональной группы тензорные части.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я